image_alt_text
9

Paula Hammond, Ph.D.

AIMBE College of Fellows Class of 2010
For outstanding contributions to the design of novel biomaterials and carriers for drug delivery.

Fighting a giant foe at a tiny scale

Via MIT | November 7, 2017

Paula Hammond’s research focuses on using nanoscale biomaterials to attack cancer, which she calls “a supervillain with incredible superpowers.” Using targeted nanoparticles, she is attempting to turn off the natural defenses of mutant genes and deliver a deadly punch to the cancer cell. Her work will soon be translated into clinical practice through partnerships with pharmaceutical companies, entrepreneurial partners, and startups in health care.

Long interested in reading and the arts, Hammond ’84, PhD ’93 considered writing children’s novels before she decided to study chemical engineering as an undergraduate at MIT. After working at Motorola for two years, she earned her master’s degree at Georgia Tech and then returned to MIT for a new PhD program in polymer science. In 1995 Hammond joined the MIT faculty, where she is now the David H. Koch Professor of Engineering and head of the Department of Chemical Engineering… Continue reading.

...

Bio-inspired approach to RNA delivery

Via MIT | September 19, 2017

By delivering strands of genetic material known as messenger RNA (mRNA) into cells, researchers can induce the cells to produce any protein encoded by the mRNA. This technique holds great potential for administering vaccines or treating diseases such as cancer, but achieving efficient delivery of mRNA has proven challenging.

Now, a team of MIT chemical engineers, inspired by the way that cells translate their own mRNA into proteins, has designed a synthetic delivery system that is four times more effective than delivering mRNA on its own.

“If we want to be able to deliver mRNA, then we need a mechanism to be more effective at it because everything that’s been used so far gives you a very small fraction of what would be the optimal efficiency,” says Paula Hammond, a David H. Koch Professor in Engineering, the head of MIT’s Department of Chemical Engineering, and a member of MIT’s Koch Institute for Integrative Cancer Research.

Hammond is the senior author of the paper, which appears in Angewandte Chemie. The paper’s lead authors are postdoc Jiahe Li and graduate student Yanpu He. Other co-authors in the paper are Wade Wang, Connie Wu, and Celestine Hong from the Hammond lab… Continue reading.

...

Advancing Medicine, Layer by Layer

Via Phys Org | July 2, 2014

Personalized cancer treatments and better bone implants could grow from techniques demonstrated by graduate students Stephen W. Morton and Nisarg J. Shah, who are both working in chemical engineering professor Paula Hammond’s lab at MIT.

Morton’s work focuses on developing drug-carrying nanoparticles to target hard-to-treat cancers—such as triple-negative breast cancer (TNBC)—while Shah develops coatings that promote better adhesion for bone implants.

Their work shares a materials-based approach that uses layer-by-layer assembly of nanoparticles and coatings. This approach provides controlled release of desirable components from chemotherapy drugs to bone growth factors. Use of natural materials promises to reduce harmful side effects.

...

Nanoparticles Attack Aggressive Tumors

Via MIT Library News | October 31, 2013

MIT chemical engineers have developed a new treatment for an aggressive form of breast cancer whose tumors resist chemotherapy drugs. Led by David H. Koch Professor in Engineering Paula Hammond, the team designed nanoparticles that pack a one-two punch: They deliver a cancer drug along with short strands of RNA that shut off genes used by cancer cells to escape the drug. The nanoparticles are also coated with an outer layer that protects them from degrading while en route to the cancer cells. The researchers used the particles to successfully shrink breast tumors in mice, as they report in a recent issue of the journal ACS Nano. The lead author on the paper is Jason Deng, a postdoc in Hammond’s lab.

...