AIMBE Nomination Categories

Choose the discipline most closely aligned with your nominee (first and second choices). Your selection will help inform the formation of review committees.

1. **Advocacy**
 Is a leader in providing an authoritative voice and advocating for the value of medical and biological engineering in society

2. **Biofabrication**
 Microfabrication and microdevices including those produced using biotemplating

3. **Bioinformatics**
 The use or development of computational tools to collect and interpret biological data

4. **Biomanufacturing**
 Using living systems (cell culture) to produce biological products including molecules and materials

5. **Biomaterials Application**
 Use of biomaterials to develop medical devices and implants

6. **Biomaterials Fundamentals**
 Development of and characterization of new biomaterials

7. **Biomechanics**
 The study of and application of the mechanics relating to the structure and movement of living systems

8. **Biomedical Imaging and Instrumentation**
 Design of systems (electronics and software) to capture images for diagnostic and therapeutic purposes

9. **Biomedical Imaging and Optics**
 The use of light as an investigational imaging technique for medical applications and the design of associated systems
10. **Biosensors, Nanotechnology**
 Development and study of analytical devices for detection of biological, chemical and electrical species

11. **Biotechnology and Pharmaceuticals**
 Application of biological organisms, systems, or processes toward the development of or improvement of materials and organisms such as pharmaceuticals, crops, and livestock.

12. **Cellular Analysis and Engineering**
 Applying engineering tools to basic cell biology research/analysis and in the making of products using living cells

13. **Clinical and Healthcare Systems Engineering**
 Seeks to increase healthcare efficiency and decrease errors in healthcare delivery

14. **Computational Bioengineering**
 Concentration focuses on the application of computational techniques to problems in molecular biology, genomics, biophysics, and synthetic biology

15. **Drug Delivery**
 Formulations, technologies, and systems for transporting a bioactive or pharmaceutical compound to an organism or target tissue

16. **Education**
 Demonstrate excellence in education, which may include development of pedagogical tools, education effectiveness research, or teaching awards

17. **Healthcare and Bioengineering Policy**
 Refers to those working on decisions, plans, and actions which were undertaken to achieve specific health care goals

18. **Industry**
 A category specifically for members of industry

19. **Medical Device Instrumentation**
 Design and development of a device or instrumentation intended for medical use
20. Molecular and Cellular Biomechanics
 The study of and application of the mechanics relating to the structure and movement of single molecules and cells.

21. Molecular Engineering
 The application of engineering principles to the design and characterization of new molecules.

22. Neural Engineering
 Uses engineering techniques to understand, repair, replace, or enhance neural systems.

23. Regulatory
 Advocates for or helps to define, create or improve regulatory pathways for medical devices and therapeutics.

24. Rehabilitation Engineering / Macroscale Biomechanics
 Participate in the research and development of assistive technology. Biomechanics relates to the structure and movement of the body and is often applied in rehab engineering.

25. Synthetic Biology
 Includes gene synthesis technology or advanced biotechnological techniques to program organisms, or designed circuits to perform a desired task.

26. Tissue Engineering and Regenerative Medicine
 Includes the use of scaffolds and or cells intended to engineer or regenerate tissues and organs.