image_alt_text
2

Mehmet Toner, Ph.D.

AIMBE College of Fellows Class of 1999
For cutting-edge contributions in the field of cryobiology, tissue engineering, and microtechnology.

Microfluidic device captures, allows analysis of tumor-specific extracellular vesicles

Via EurekAlert | February 27, 2018

A new microfluidic device developed by investigators at Massachusetts General Hospital (MGH) may help realize the potential of tumor-derived extracellular vesicles (EVs) – tiny lipid particles that carry molecules through the bloodstream – as biomarkers that could monitor a tumor’s response to therapy and provide detailed information to guide treatment choice. In their report published earlier this year in Nature Communications, the team from the MGH Center for Engineering in Medicine (MGH-CEM) describes how EVs captured from serum or plasma samples of patients with the dangerous brain tumor glioblastoma multiforme (GBM) provided detailed, tumor-specific genetic and molecular information.

“Glioblastoma is a highly fatal disease with few treatment options,” says senior author Shannon Stott, PhD, of the MGH Cancer Center and the BioMEMS Resource Center in the MGH-CEM. “Due to the tumor’s location, it has been challenging to get dynamic, real-time molecular information, which limits the ability to determine tumor progression and to match patients with the most promising new therapies. Our device’s ability to sort tumor-specific EVs out from the billions of EVs carried through the bloodstream may lead to the development of much-needed diagnostic and monitoring tools for this and other hard-to-treat cancers… Continue reading.

...