image_alt_text
8

Christopher Chen, M.D., Ph.D.

AIMBE College of Fellows Class of 2011
For the use of microfabrication tools to study the role of cell adhesion, cell shape, and cell mechanics in regulating cell function.

3D Printed Vascular Patches with Patterned Channels Used to Grow Organized Blood Vessels in Mice

Via 3D Print.com | March 12, 2018

Ischemic cardiovascular disease is the number one cause of death and disability in the US, and growing fast around the rest of the world as well. Ischemic refers to tissue that has been starved of oxygen – when heart disease results in blocked blood vessels, the tissues can die because the blood cells carrying precious oxygen can’t get through.

Many serious conditions, such as peripheral artery disease, strokes, and even heart failure, can occur when the blood circulation to tissues and organs is impaired. While surgery is an option to get rid of blockages in the larger vessels in the legs or heart, it can’t be done in smaller ones, which is unfortunately where most of the damage takes places that causes these conditions in the first place.

An interdisciplinary research group of biologists, engineers, and physicians, funded in part by the National Institute of Biomedical Imaging and Bioengineering (NIBIB), are working together to develop a 3D printed solution to the problem of ischemia caused by damage to small blood vessels.

The team, led by Christopher Chen, MD, PhD, Professor of Biomedical Engineering and Founding Director of the Biological Design Center at Boston University, has designed 3D printed patches that are seeded, in a variety of geometric patterns, with vessel-inducing endothelial cells, which can actually produce tissue-saving vascular networks… Continue reading.

Bridging the Gap

Via Boston U. | March 25, 2016

The world can be a dangerous place. With more than 41 million visits to the emergency department due to trauma in the U.S. each year, it is crucial to study the process of wound healing and how medical intervention might facilitate it. A study led by Professor Christopher Chen (BME), published inNature Communications, points to a promising new direction researchers could use to better understand wound healing.

Chen and his research team have developed a three-dimensional microtissue culture that mimics the healing process more closely than the traditional two-dimensional culture of cells that researchers have long used.

“Healing wounds requires the human body to fill 3D spaces, so we reasoned that healing of wounded 3D microtissues would more closely resemble wound healing in the human body,” says Chen. “This finding has the potential to become the new standard to study wound healing in vitro.”

Biological Design Center Comes to Life

Via Boston U. | May 5, 2015

Imagine the state-of-the-art 21st-century life sciences and engineering lab. It would bring together forward-thinking researchers from the hottest fields in bioengineering. These scientists would combine genomic technologies like DNA sequencing and synthesis, 3-D printers, and robots to make new molecules, tissues, and entire organisms. They would tinker in pursuit of cutting-edge questions like these: How do you guide cells to regenerate and build new tissue? How do you reprogram bacteria to fight infection—or reengineer the body’s immune system to attack tumors so they disappear? How do you organize the circuitry inside a cell so it sends all the right signals for optimal health?

This is the lab that Christopher Chen, a College of Engineering Distinguished Professor and one of the world’s leading experts in tissue engineering and regenerative medicine, began dreaming up last summer with three ENG faculty who are young stars in synthetic biology—Ahmad (Mo) Khalil, Douglas Densmore, and Wilson W. Wong.