image_alt_text
5

Treena Livingston Arinzeh, Ph.D

AIMBE College of Fellows Class of 2013
For outstanding contributions for her work in the fields of tissue engineering and biomaterials, stem cell biology, and bone-related research.

The University City Science Center is backing development of NJIT’s novel bone graft tech

Via EurekAlert | January 29, 2018

Treena Arinzeh, director of NJIT’s Tissue Engineering and Applied Biomaterials Laboratory, has been awarded a grant from the University City Science Center in Philadelphia to help commercialize technology she is developing to reduce the recovery time and cost associated with bone grafts.

Arinzeh received $100,000 from the Science Center’s QED Proof-of-Concept Program, which NJIT is matching, to further develop and deploy a bioactive composite matrix she invented to serve as a bone graft substitute. The matrix is designed to work alone or in combination with a patient’s own bone marrow to repair bone defects.

Roughly half of the million orthopedic procedures performed in the U.S. each year for reconstructive surgery, trauma or abnormal skeletal defects include bone grafting. In addition to a limited supply, current bone grafts and graft substitutes can result in poor bone healing and other adverse effects. Arinzeh’s technology is a unique synthetic matrix that can be used as an autograft extender allowing improved cell attachment, bone ingrowth and bone formation… Continue reading.

...

Rebuilding spinal cords with an engineer’s toolkit

Via Medical Xpress | November 16, 2017

Like an earthquake that ruptures a road, traumatic spinal cord injuries render the body’s neural highway impassable. To date, there are neither workable repairs nor detours that will restore signal flow between the brain and limbs, reversing paralysis.

“The problem with spinal cord injuries is that nerve cells do not regenerate,” explains Treena Arinzeh, director of NJIT’s Tissue Engineering and Applied Biomaterials Lab, who has proposed a solution: a scaffold, made of an energetic polymer, that will coax nerve cells to extend their axons over the spine’s damaged section.

Earlier this month, Arinzeh and her lab team, former graduate student, Yee-Shuan Lee, Ph.D. ’10, and George Collins, an adjunct professor, won an Edison Patent Award from the New Jersey Research and Development Council for their invention. Their repair strategy combines a piezoelectric scaffold with neural cells to regenerate nerve tissue in spinal cord injuries. Piezoelectric material, which produces an electrical charge in response to a mechanical force, is also used in sonar and sound technologies. The advantage of this “smart” material is that it generates its own charge and does not require an external power source.

“Axons – the fibers that transmit messages – can potentially travel long distances if given the right cues to regrow. We knew that an electrical charge could direct this growth,” Arinzeh says, adding, “Some tissues in the body are naturally piezoelectric. What we did was to create a fibrous material that is similar, but with a higher charge to stimulate growth… Continue reading.

...