image_alt_text
5

Thomas J. Webster, Ph.D.

AIMBE College of Fellows Class of 2013
For outstanding contributions in nanotechnology and regenerative medicine as well as leadership, education, and community outreach in biomedical engineering.

Northeastern University studying nanotechnology to help curb COVID-19 spread

Via WCVB ABC | October 13, 2020

A group of scientists at Northeastern University are making progress using nanotechnology to prevent, diagnose and fight the coronavirus.

Thomas Webster, professor of chemical engineering at Northeastern University, has been working with nanotechnology for decades. Now, he and his team are finding new applications with the coronavirus.

Their goal is to find ways to keep the virus from spreading, improve testing, and create a therapy. “This is why viruses are such a huge problem, because they’re so small and pervasive… Find out more.

Northeastern Professor Partners With Audax Medical Inc., to Combat Covid-19

Via Northeastern University | May 12, 2020

The Problem At Hand

The COVID-19 pandemic has changed many aspects of daily modern life; employees work from home, students attend class online, and individuals have been encouraged to stay inside, only leaving isolation for the essentials. The response has provided a mild reprieve from the rapid spread of the virus, though it is a temporary solution to a problem without a clear end in sight. Companies, universities and research labs involved in the health sciences across the world have shifted their focuses to combating COVID-19 and viral outbreaks to provide a better, more permanent solution for overcoming pandemic.

Recently, alongside Stanford University, Harvard University, and the Massachusetts Institute for Technology, the Center for Research Innovation at Northeastern University announced their support of the COVID-19 Technology Access Framework, which is a set of licensing principles that aims to make technologies that could aid research in preventing, diagnosing and treating COVID-19 more available. We took a moment to talk to Thomas Webster, a faculty researcher at Northeastern, about his work on one of these technologies.

The Inventor

Webster is a Professor at the College of Engineering at Northeastern University and heads a research lab responsible for researching and developing advanced nano-molecular technology that he calls the “Nano-Medicine Lab.” Earlier this month, Audax Medical, Inc., a Massachusetts-based company dedicated to developing medical innovations, licensed a technology developed in Webster’s lab that utilizes a nano-molecular approach to viral therapy… Continue reading.

Here’s How Nanoparticles Could Help Us Get Closer to a Treatment for COVID-19

Via Northeastern University | March 31, 2020

There is no vaccine or specific treatment for COVID-19, the disease caused by the severe acute respiratory syndrome coronavirus 2, or SARS-CoV-2.

Since the outbreak began in late 2019, researchers have been racing to learn more about SARS-CoV-2, which is a strain from a family of viruses known as coronavirus for their crown-like shape.

Northeastern chemical engineer Thomas Webster, who specializes in developing nano-scale medicine and technology to treat diseases, is part of a contingency of scientists that are contributing ideas and technology to the Centers for Disease Control and Prevention to fight the COVID-19 outbreak… Continue reading.

Nanovis Announces Commercial Launch of New Nanosurface Technology on Spinal Interbody Implants

Via Nanovis | July 30, 2019

Nanovis today announced the commercial launch of its bioceramic nanotube enhanced FortiCore interbodies following a successful alpha launch.

The FortiCore interbodies are designed with a unique, proprietary, patent protected bio-ceramic enhanced titanium nanotube surface. The nanotubes are applied to a deeply porous, fully interconnected titanium scaffold intermolded with a PEEK core for preferred modulus and plain x-ray visualization.

A few leading innovators from select areas around the United States were the first in the world to use this new nanotechnology… Continue reading.

[New Book] Immune Aspects of Biopharmaceuticals and Nanomedicines

Via CRC Press | May 23, 2019

Tom Webster and his colleagues newly published a book titled “Immune Aspects of Biopharmaceuticals and Nanomedicines.”

Summary: The enormous advances in the immunologic aspects of biotherapeutics and nanomedicines in the past two decades has necessitated an authoritative and comprehensive reference source that can be relied upon by immunologists, biomedical researchers, clinicians, pharmaceutical companies, regulators, venture capitalists, and policy makers alike. This text provides a thorough understanding of immunology, therapeutic potential, clinical applications, adverse reactions, and approaches to overcoming immunotoxicity of biotherapeutics and nanomedicines. It also tackles critical, yet often overlooked topics such as immune aspects of nano-bio interactions, current FDA regulatory guidances, complement activation-related pseudoallergy (CARPA), advances in nanovaccines, and immunogenicity testing of protein therapeutics… Learn more.

Nanovis Named MedTech Outlook Top 10 Orthopedic Solution Provider 2019

Via Nanovis | May 8, 2019

Nanovis today announced that MedTech Outlook recognized Nanovis as a Top 10 Orthopedic Solution Provider, 2019. Its industry-leading fixation technologies offer surgeons and hospitals the best aspects of fixation, visualization, and durability. Nanovis’ developmental infection technology platforms promise to offer surgeons and hospitals much-needed bactericidal solutions.

A distinguished panel of CMIOs, CIOs, analysts, and venture capitalists, along with the editorial panel of Med Tech Outlook has selected Nanovis as a Top 10 Orthopedic Solution Provider, We congratulate Nanovis for being at the forefront of providing cutting-edge infection technology solutions; the value these solutions offer to surgeons and hospitals is evident. We anticipate hearing more about the success of Nanovis in the years to comeContinue reading.

Nanovis Wins the Global Health & Pharma 2018 Technology Awards

Via PR Web | February 5, 2019

Nanovis today announced that Global Health & Pharma magazine recognized Nanovis as the Best Nanotechnology Driven Implant Company, 2018.

Nanovis is a technology-driven growth company committed to helping surgeons and hospitals achieve excellent fixation and infection outcomes using advanced nanotechnology platforms. Its industry-leading fixation technologies offer surgeons and hospitals the best aspects of fixation, visualization, and durability. Nanovis’ developmental infection technology platforms promise to offer surgeons and hospitals much-needed bactericidal solutions.

“Nanovis is honored to be recognized for the technology award by Global Health & Pharma,” says Nanovis CEO Matt Hedrick. “It validates the progress we’ve made towards our vision of discovering, licensing and launching the best spinal implant technologies for fixation and infection… Continue reading.

Nanovis Announces FDA Clearance of FortiCore® PLIF and TLIF Spinal Interbodies with Nanosurface Features

Via Orthospine News | March 29, 2018

Nanovis, today announced the successful FDA clearance of its FortiCore® TLIF and PLIF interbodies featuring a Nanosurface-enhanced deeply porous titanium scaffold intermolded with a PEEK core.

“Implant nano surface science has advanced from the early days when we simply created nanoroughness for implants because tissues have nanoroughness. Now we understand the mechanisms by which nanotopographies can interact with cellular signaling pathways. I’m delighted that with Nanovis’ implants, patients can now benefit from a carefully designed and controlled nanotopography that harnesses this groundbreaking research,” said Thomas Webster, PhD, Chemical Engineering Department Chair, Northeastern University, who with Chang Yao, PhD, were early pioneers in the use of nanosurfaces to enhance bone growth.

Nanovis’ foundational FortiCore interbody fusion platform is well proven with over 4,250 implanted to date. FortiCore interbodies have deeply porous interconnected titanium scaffolds intermolded with a PEEK core, giving surgeons important fixation and imaging advantages. Data comparing the osseointegration strength of the FortiCore scaffold, PEEK, and allograft to the strength of trabecular host bone was published in Spine in late 2016. Now the titanium scaffolds on the FortiCore TLIF and PLIF interbodies are enhanced with a carefully designed and controlled nanosurface… Continue reading.

Thomas Webster has published a new textbook, “Immune Aspects of Biopharmaceuticals and Nanomedicines”

Via CRC Press | March 7, 2018

A stand-alone, easily accessible volume that examines and provides a broad survey of various topics pertaining to the immune effects of biopharmaceuticals and nanomedicines, both beneficial and adverse.

An essential reference for the novice and expert alike in diverse areas such as medicine, law, biotechnology, nanotechnology, pharmaceutical sciences, toxicology, drug development, regulatory science, and governmental affairs.

Highlights both cutting-edge technological advances and also addresses critical topics such as nano-bio interactions, toxicity, and FDA regulatory issues… Continue reading.

Tom Webster on National Geographic, Episode 2

Via Northeastern | May 24, 2017

ChE Chair Tom Webster, speaking about his nanotechnology research, was featured in Episode 2 of Year Million, a National Geographic television series on what life is going to be like for humans one million years in the future.

What was once conceived as science fiction is now anchored in reality. YEAR MILLION, a new six-part documentary-drama series from National Geographic, explores what it will be like to be human one million years into the future. Today’s brightest futurists, scientists, scholars and notable science fiction writers guide viewers through the very latest advances in technology, ideas and innovations that likely will power the evolution of our species.

Watch Prof. and Chair Tom Webster speak about his nanotechnology research in episode 2 and episode 4!

Thomas Webster To Run 1st International Meeting on the Advanced Applications of Natural Biomaterials

Via Northeastern | August 3, 2016

On September 29-30, a hundred researchers will gather at the 1st International Meeting on the Advanced Applications of Natural Biomaterials. This conference will be held at the Center of Natural Tropical Biomaterials located in Rionegro, Antioquia, Colombia. Attendees include researchers and graduate students from engineering as well as biomedical companies, pharmaceutical companies, and representatives from the agro-food industry.

The Center of Natural Tropical Biomaterials is a joint center between Northeastern University and the University of Antioquia, with a mission to strengthen collaborations around the use of natural materials commonly found in tropical locations for medicine.

Research at the center is of great importance to the scientific community throughout the region and the country, and has led to collaboration between Dr. Juan Jose Pavon Palacio and Dr. Thomas Webster. Most recently, Dr. Pavon Palacio travelled to Northeastern to speak at Boston Biomaterials Day for his presentation titled “Advanced Processing of Porous Titanium for Bone Tissue Repair: Multi-Factorial, Multi-Scale and Multi-Functional New Therapies”. Dr. Webster will represent Northeastern University in the conference discussion “Opportunities and Strategies to Participate in the Center of Tropical Biomaterials”.

Webster on 2016 List of Most Cited Researchers in Material Science and Engineering

Via Northeastern | July 20, 2016

ChE Chair & Professor Thomas Webster was selected as one of the 2016 List of Most Cited Researchers in Materials Science and Engineering by Elsevier Scopus Data. The list includes only the top 300 researchers in the field of materials science and engineering.

Webster Receives Acta Biomaterialia Silver Medal

Via Northeastern | July 13, 2016

ChE Chair and Professor Thomas Webster will receive the 1st Annual Acta Biomaterialia Silver Medal at the Society For Biomaterials Conference in Minneapolis in April 2017.

The Acta Biomaterialia Silver Medal intends to honor and recognize scientific contributions and leadership from academic, industry and public sector leaders in the midst of their careers. Many awards recognize outstanding young investigators or integrated contributions throughout a career. The Silver Medal is established to recognize significant research contributions that are recent and timely. Specifically, the awardee will have made significant contributions through one or more of the following means:

A theoretical or experimental discovery of a new principle in biomaterials science
Development or invention of a new process or product in the biomaterials engineering field
Distinguished leadership or service rendered to the profession of biomaterials science and engineering
The nominee should be 45 years of age or under at the end of the calendar year in which the award is announced.