Tony June Huang, Ph.D.

AIMBE College of Fellows Class of 2015
For outstanding contributions in the areas of acoustofluidics, optofluidics, microfluidics, and acoustic tweezers

Blood testing via sound waves may replace some tissue biopsies

Via MIT | September 18, 2017

Cells secrete nanoscale packets called exosomes that carry important messages from one part of the body to another. Scientists from MIT and other institutions have now devised a way to intercept these messages, which could be used to diagnose problems such as cancer or fetal abnormalities.

Their new device uses a combination of microfluidics and sound waves to isolate these exosomes from blood. The researchers hope to incorporate this technology into a portable device that could analyze patient blood samples for rapid diagnosis, without involving the cumbersome and time-consuming ultracentrifugation method commonly used today.

“These exosomes often contain specific molecules that are a signature of certain abnormalities. If you isolate them from blood, you can do biological analysis and see what they reveal,” says Ming Dao, a principal research scientist in MIT’s Department of Materials Science and Engineering and a senior author of the study, which appears in the Proceedings of the National Academy of Sciences the week of Sept. 18.

The paper’s senior authors also include Subra Suresh, president-designate of Nanyang Technological University in Singapore, MIT’s Vannevar Bush Professor of Engineering Emeritus, and a former dean of engineering at MIT; Tony Jun Huang, a professor of mechanical engineering and materials science at Duke University; and Yoel Sadovsky, director of the Magee-Women’s Research Institute. The paper’s lead author is Duke graduate student Mengxi Wu… Continue reading.

Acoustic Tweezers Provide Much Needed Pluck for 3-D Bioprinting

Via Carnegie Mellon | January 25, 2016

Monday, January 25, 2016-Researchers, including Carnegie Mellon University President Subra Suresh and collaborators Tony Jun Huang from the Pennsylvania State University and Ming Dao from MIT, have demonstrated that acoustic tweezers can be used to non-invasively move and manipulate single cells along three dimensions, providing a promising new method for 3-D bioprinting. Their findings are published in this week’s issue of the Proceedings of the National Academy of Sciences (PNAS).Multicellular structures within living things are complex and delicate, which makes recreating these structures a daunting task. For example, the human heart contains more than 2 billion muscle cells. Each of these cells must properly interact with one another and with their environment to ensure that the heart functions properly. If those cells aren’t placed correctly, or are damaged, it could potentially result in any of a variety of heart conditions.3-D bioprinting is a promising way to recreate the complex, multicellular architecture of biological tissues. Researchers have been using a combination of approaches, but have yet to develop a single method that has the high level of precision, versatility, multiple dimensionality and single cell resolution needed to form complex multicellular structures while maintaining cell viability, integrity and function.Illustration of the planar surface acoustic wave generators, used to generate volumetric nodes, surrounding the microfluidic experimental area. The inset indicates a single particle within a “3-D trapping node,” which is independently manipulated along the x, y or z axes.“The results presented in this paper provide a unique pathway to manipulate biological cells, accurately and in three dimensions, without the need for any invasive contact, tagging or biochemical labeling,” Suresh said. “This approach could lead to new possibilities for research and applications in such areas as regenerative medicine, neuroscience, tissue engineering, bio-manufacturing and cancer metastasis.”

Tony June Huang, Ph.D. To be Inducted into Medical and Biological Engineering Elite

Via AIMBE | March 5, 2015

WASHINGTON, D.C.— The American Institute for Medical and Biological Engineering (AIMBE) has announced the pending induction of Tony June Huang, Ph.D., Professor of Engineering Science and Mechanics, Director of the Penn State Acoustofluidics Laboratory, Department of Engineering Science and Mechanics, The Pennsylvania State University, to its College of Fellows. Dr. Huang was nominated, reviewed, and elected by peers and members of the College of Fellows For outstanding contributions in the areas of acoustofluidics, optofluidics, microfluidics, and acoustic tweezers.