image_alt_text
10

Zhen Xu, Ph.D.

AIMBE College of Fellows Class of 2019
For outstanding contribution to invention and development of histotripsy, an image-guided, noninvasive ultrasonic cavitation therapy.

Tumor-destroying sound waves receive FDA approval for liver treatment in humans

Via University of Michigan | October 9, 2023

Technique developed at the University of Michigan provides a noninvasive alternative to surgery, chemotherapy and radiation treatments for cancer

The U.S. Food and Drug Administration has approved the use of sound waves to break down tumors—a technique called histotripsy—in humans for liver treatment.

Pioneered at the University of Michigan, histotripsy offers a promising alternative to cancer treatments such as surgery, radiation and chemotherapy, which often have significant side effects. Today, FDA officials awarded clearance to HistoSonics, a company co-founded in 2009 by U-M engineers and doctors for the use of histotripsy to destroy targeted liver tissue… Continue reading.

How sound waves trigger immune responses to cancer in mice

Via University of Michigan | January 31, 2023

When noninvasive sound waves break apart tumors, they trigger an immune response in mice. By breaking down the cell wall “cloak,” the treatment exposes cancer cell markers that had previously been hidden from the body’s defenses, researchers at the University of Michigan have shown.

The technique developed at Michigan, known as histotripsy, offers a two-prong approach to attacking cancers: the physical destruction of tumors via sound waves and the kickstarting of the body’s immune response. It could potentially offer medical professionals a treatment option for patients without the harmful side effects of radiation and chemotherapy… Continue reading.

Tumors partially destroyed with sound don’t come back

Via University of Michigan | April 18, 2022

Noninvasive sound technology developed at the University of Michigan breaks down liver tumors in rats, kills cancer cells and spurs the immune system to prevent further spread—an advance that could lead to improved cancer outcomes in humans.

By destroying only 50% to 75% of liver tumor volume, the rats’ immune systems were able to clear away the rest, with no evidence of recurrence or metastases in more than 80% of animals.

“Even if we don’t target the entire tumor, we can still cause the tumor to regress and also reduce the risk of future metastasis,” said Zhen Xu, professor of biomedical engineering at U-M and corresponding author of the study in Cancers… Continue reading.

Dr. Zhen Xu Inducted into Medical and Biological Engineering Elite

Via AIMBE | March 28, 2019

WASHINGTON, D.C.—The American Institute for Medical and Biological Engineering (AIMBE) has announced the induction of Zhen Xu, Ph.D., Associate Professor and and Associate Chair of Graduate Education, Department of Biomedical Engineering, University of Michigan, to its College of Fellows.

Election to the AIMBE College of Fellows is among the highest professional distinctions accorded to a medical and biological engineer. The College of Fellows is comprised of the top two percent of medical and biological engineers. College membership honors those who have made outstanding contributions to “engineering and medicine research, practice, or education” and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of medical and biological engineering, or developing/implementing innovative approaches to bioengineering education.”

Dr. Xu was nominated, reviewed, and elected by peers and members of the College of Fellows for “outstanding contribution to invention and development of histotripsy, an image-guided, noninvasive ultrasonic cavitation therapy.”