image_alt_text
1

David Baker, Ph.D.

AIMBE College of Fellows Class of 2020
For outstanding contributions to molecular modeling and protein design platforms that address 21st century challenges in medicine, energy and technology.

Artificial Intelligence Successfully Predicts Protein Interactions

Via Lab Manager | November 17, 2021

University of Texas (UT) Southwestern and University of Washington researchers led an international team that used artificial intelligence (AI) and evolutionary analysis to produce 3D models of eukaryotic protein interactions. The study, published in Science, identified more than 100 probable protein complexes for the first time and provided structural models for more than 700 previously uncharacterized ones. Insights into the ways pairs or groups of proteins fit together to carry out cellular processes could lead to a wealth of new drug targets.

“Our results represent a significant advance in the new era in structural biology in which computation plays a fundamental role,” said Qian Cong, PhD, assistant professor in the Eugene McDermott Center for Human Growth and Development with a secondary appointment in Biophysics.

Cong led the study with David Baker, PhD, professor of biochemistry and Cong’s postdoctoral mentor at the University of Washington prior to her recruitment to UT Southwestern… Continue reading.

...

Protein biosensors show promise for SARS-CoV-2 testing

Via Science Board | February 1, 2021

An illustration of a new biosensor binding to a targeted molecule and emitting light. Image courtesy of Ian Haydon/Institute for Protein Design at the University of Washington.

Scientists have developed biosensors to detect SARS-CoV-2 proteins and antibodies in simulated nasal fluids and human sera, according to a study published in Nature on January 27. The approach promises to be less costly and time-consuming than current COVID-19 testing methods.

Biosensors are devices used to detect the presence or concentration of specific biomolecules or biological structures. In this case, the researchers designed protein-based biosensors that recognize specific molecules on the surface of a particular virus and bind to them, then emit light through a biochemical reaction.

The scientists applied this approach to design biosensors of antibodies against SARS-CoV-2 protein epitopes and of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein.

The result was a biosensor that glows when mixed with COVID-19 antibodies… Continue reading.

...

Dr. David Baker Inducted into AIMBE College of Fellows

Via AIMBE | March 30, 2020

WASHINGTON, D.C. — The American Institute for Medical and Biological Engineering (AIMBE) has announced the induction of David Baker, Ph.D., Professor, Biochemistry, University of Washington, Investigator, Howard Hughes Medical Institute, to its College of Fellows.

Election to the AIMBE College of Fellows is among the highest professional distinctions accorded to a medical and biological engineer. The College of Fellows is comprised of the top two percent of medical and biological engineers. College membership honors those who have made outstanding contributions to “engineering and medicine research, practice, or education” and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of medical and biological engineering, or developing/implementing innovative approaches to bioengineering education.”

Dr. Baker was nominated, reviewed, and elected by peers and members of the College of Fellows for “outstanding contributions to molecular modeling and protein design platforms that address 21st century challenges in medicine, energy and technology.

...