image_alt_text
10

Dan G. Duda, DMD, Ph.D.

AIMBE College of Fellows Class of 2020
For outstanding contributions to understanding the metastatic process in cancer and combating treatment resistance in hepato-biliary and pancreatic malignancies.

Discovery of a new approach to inhibiting a highly treatment-refractory liver cancer

Via EurekAlert | January 12, 2021

Reprogramming the rich connective tissue microenvironment of a liver cancer known as intrahepatic cholangiocarcinoma (ICC) inhibits its progression and resistance to standard chemotherapy in animal models, researchers from Massachusetts General Hospital (MGH) have found. This new treatment for a disease with extremely poor outcomes uses antibodies to block placental growth factor (PlGF), a member of the vascular endothelial growth factor (VEGF) family, which has been widely studied for its role in new vessel formation in cancers. PlGF is highly expressed in ICC compared to normal liver tissue, and blocking it reduces the production of connective tissue while increasing the efficacy of chemotherapy and survival in mice with ICC. These findings were reported in Gut, the journal of the British Society of Gastroenterology.

“We were able to demonstrate that PlGF is a mediator of ICC progression, and that antibody blockade of PlGF in ICC models inhibited the activity of cancer-associated fibroblasts (CAFs), which produce connective tissue and also provide ICC cells with pro-survival and pro-invasion signals,” says Dan G. Duda, DMD, PhD, director of Translational Research in GI Radiation Oncology at MGH, and senior author of the study. “Our findings suggest that PlGF inhibition is a potential therapeutic target that could have implications for other emerging combination therapies that have shown promise against ICC, a largely intractable disease with a dismal prognosis… Continue reading.

...

Combination therapy might improve outcomes in treatment-resistant liver cancer

Via Massachusetts General Hospital | November 30, 2020

A combination cancer therapy that is effective against treatment-resistant hepatocellular carcinoma (HCC) by inhibiting tumor growth and increasing survival has been identified by researchers at Massachusetts General Hospital (MGH). In a paper published in the Journal for ImmunoTherapy of Cancer, the investigators describe how the dual therapy — which combines the multikinase inhibitor drug regorafenib to “reprogram” the tumor immune microenvironment, and programmed cell death 1 (PD1) antibodies to stimulate anti-tumor immunity — improved survival in mouse models of HCC beyond what each therapy could have achieved alone.

“The holy grail of immunotherapy in treating solid cancers like HCC is to draw cancer-fighting T-cells inside the tumor,” explains Dan G. Duda, DMD, PhD, director of translational research in GI Radiation Oncology at MGH and senior author of the study. “We found that regorafenib delivered at the right intermediate dose tricks cancer cells into expressing a chemokine known as CXCL10 which, in turn, triggers intratumoral T-cell infiltration… Continue reading.

...

Dr. Dan Duda Inducted into AIMBE College of Fellows

Via AIMBE | March 30, 2020

WASHINGTON, D.C. — The American Institute for Medical and Biological Engineering (AIMBE) has announced the induction of Dan G. Duda, DMD, Ph.D., Director of Translational Research in GI Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Investigator, Edwin L. Steele Laboratories for Tumor Biology, Massachusetts General Hospital Research Institute, Associate Professor of Tumor Biology, Harvard Medical School, to its College of Fellows.

Election to the AIMBE College of Fellows is among the highest professional distinctions accorded to a medical and biological engineer. The College of Fellows is comprised of the top two percent of medical and biological engineers. College membership honors those who have made outstanding contributions to “engineering and medicine research, practice, or education” and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of medical and biological engineering, or developing/implementing innovative approaches to bioengineering education.”

Dr. Duda was nominated, reviewed, and elected by peers and members of the College of Fellows for “outstanding contributions to understanding the metastatic process in cancer and combating treatment resistance in hepato-biliary and pancreatic malignancies.

...