image_alt_text
8

Guillermo Ameer, Sc.D.

AIMBE College of Fellows Class of 2009
For outstanding contributions to medical and biological engineering through his noted work with vascular and orthopaedic tissues.

3D Printing and Citrate Biomaterials Could Allow Dissolvable Stents

Via Northwestern University | June 14, 2024

Implanted stents have saved countless lives. A tiny metal mesh coil, stents keep arteries open for blood to flow that’s crucial to the body to function after a traumatic angioplasty or cardiac event.

That doesn’t mean they’re a perfected technology.

Stents themselves can also develop plaque due to the systemic nature of the same cardiovascular disease they were implanted to counteract. With cardiovascular disease the leading cause of death globally, according to the World Health Organization, the need for more effective stents has never been greater… Continue reading.

...

Antioxidant gel preserves islet function after pancreas removal

Via Northwestern University | June 7, 2024

New approach could enable patients to live pain-free without complications of diabetes

Northwestern University researchers have developed a new antioxidant biomaterial that someday could provide much-needed relief to people living with chronic pancreatitis.

The study was published today (June 7) in the journal Science Advances.

Before surgeons remove the pancreas from patients with severe, painful chronic pancreatitis, they first harvest insulin-producing tissue clusters, called islets, and transplant them into the vasculature of the liver. The goal of the transplant is to preserve a patient’s ability to control their own blood-glucose levels without insulin injections… Continue reading.

...

This implant will tell a smartphone app when you need to pee

Via Popular Science | March 25, 2024

The stretchy, wireless sensor could keep patients with bladder issues informed in real-time.

For people dealing with spina bifida, paralysis, and various bladder diseases, determining when to take a bathroom break can be an issue. To help ease the frequent stress, researchers at Northwestern University have designed a sensor array that attaches to the bladder’s exterior wall, enabling it to detect its fullness in real time. Using embedded Bluetooth technology, the device then transmits its data to a smartphone app, allowing users to monitor their bodily functions without far less discomfort and guesswork.

The new tool, detailed in a study published today in the Proceedings of the National Academy of Sciences (PNAS), isn’t only meant to prevent incontinence issues. Lacking an ability to feel bladder fullness extends far beyond the obvious inconveniences—for millions of Americans dealing with bladder dysfunctions, not knowing when to go to the bathroom can cause additional organ damage such as regular infections and kidney damage. To combat these issues, the new medical device mirrors the bladder’s own elasticity… Continue reading.

...

Guillermo A. Ameer Elected a Biomaterials Science and Engineering Fellow

Via Northwestern University | December 7, 2023

With his election, Ameer joins a group of fewer than 500 biomaterials scientists worldwide

Northwestern Engineering’s Guillermo A. Ameer has been elected a Fellow of Biomaterials Science and Engineering (FBSE) by the International Union of Societies for Biomaterials Science and Engineering (IUSBSE), the highest honor the global biomaterials community can bestow on outstanding scientists. With his election, Ameer joins a group of fewer than 500 biomaterials scientists worldwide who have been named a FBSE.

Ameer will be formally inducted May 27 at the World Biomaterials Congress in Daegu, South Korea. Fellowships recognize those who have gained a status of excellent professional standing and high achievements in the field of biomaterials science and engineering… Continue reading.

...

Ameer Wins BMES Athanasiou Medal of Excellence in Translational Bioengineering

Via Northwestern University | October 11, 2023

The medal honors an individual who has made contributions to the field with particular focus on translation

Northwestern Engineering’s Guillermo A. Ameer has been named the inaugural winner of the Biomedical Engineering Society (BMES) Athanasiou Medal of Excellence in Translational Bioengineering.

The medal recognizes the achievements of an individual who has made outstanding contributions to the field of biomedical engineering with a particular focus on translation. Achievements include significant research contributions in translational bioengineering and/or development of new products in biomedical engineering… Continue reading.

...

Ameer Wins 2023 Excellence in Biomaterials Science Award

Via northwestern | August 23, 2023

The award recognizes an individual who has made significant contributions to the science of biomaterials

Northwestern Engineering’s Guillermo A. Ameer has been elected the winner of the 2023 Excellence in Biomaterials Science Award, an honor given by the Surfaces in Biomaterials Foundation (SIBF).

The award, the highest given by the foundation, recognizes an individual who has made significant contributions to the biomaterials science field. Previous winners include Moderna cofounder Robert Langer (2020) and the late Northwestern professor Richard Van Duyne (1991… Continue reading.

...

Designing Surfaces to Improve Bone Grafts

Via Northwestern University | June 12, 2023

The field of bone implants has taken incredible strides thanks to technological innovations that allow for stronger grafts that are easier to install.

Yet even with these advances, there are still risks involved in such procedures. Implants can be loosened following operations, for example, which can lead to costly surgical revisions that lengthen the recovery process for patients.

New research from an interdisciplinary team from Northwestern Engineering’s Center for Advanced Regenerative Engineering (CARE) and Center for Physical Genomics and Engineering (CPGE) could reduce the likelihood of these painful, expensive complications… Continue reading.

...

Guillermo Ameer elected to American Academy of Arts and Sciences

Via Northwestern University | April 19, 2023

Eight members of the Northwestern University faculty have been elected members of the American Academy of Arts and Sciences, one of the nation’s oldest and most prestigious honorary societies.

Guillermo Ameer, Jian Cao, Mercouri Kanatzidis, Shana Kelley, Aldon Morris, Susan Quaggin, Ali Shilatifard and Krista Thompson are among the nearly 270 members elected in 2023 drawn from academia, the arts, industry, policy, research and science… Continue reading.

...

First Transient Electronic Bandage Speeds Healing by 30 Percent

Via Northwestern University | February 22, 2023

Bandage also monitors the healing process, alerting clinicians to issues in real time

Northwestern Engineering researchers have developed a first-of-its-kind small, flexible, stretchable bandage that accelerates healing by delivering electrotherapy directly to the wound site.

In an animal study, the new bandage healed diabetic ulcers 30 percent faster than in mice without the bandage.

The bandage also actively monitors the healing process and then harmlessly dissolves — electrodes and all — into the body after it is no longer needed. The new device could provide a powerful tool for patients with diabetes, whose ulcers can lead to various complications, including amputated limbs or even death… Continue reading.

...

Stryker launches Citrefix™ Suture Anchor System, featuring award-winning Citregen biomaterial designed to support bone regeneration and the natural healing process

Via Stryker | December 13, 2022

Stryker (NYSE:SYK) today announced the launch of Citrefix™, a suture anchor system for foot and ankle surgical procedures. The new system uses Citregen™, an award-winning bioresorbable material designed to mimic the chemistry and structure of native bone.

“Our customers will now benefit from the expanded use of one of the most innovative bioresorbable materials available for use in foot and ankle procedures,” said Michael Rankin, vice president, marketing and medical education for Stryker’s Foot & Ankle business. “Citrefix’s unique suture anchor system is the next step in our expanding Citregen portfolio.”

Citrefix is a disposable suture anchor system that features a resorbable biomimetic anchor body. It is made with Citregen, an elastomeric material made from a citrate polymer specially designed to mimic bone chemistry for controlled resorption without chronic inflammation. These unique chemical and mechanical properties are designed to help grafted tissue heal and healthy bone to grow when used in orthopaedic surgical applications. The sterile-packed set includes a cartridge with preloaded implant and eyelet, a drill bit, a drill guide and pre-assembled inserter… Continue reading.

...

Ameer Wins 2022 Innovation Commercialization Award

Via Northwestern University | July 13, 2022

The award recognizes the application of tissue engineering and regenerative medicine that benefits patients

Northwestern Engineering’s Guillermo A. Ameer was honored with the 2022 Innovation/Commercialization Award by the Tissue Engineering and Regenerative Medicine International Society-Americas (TERMIS-AM).

The award recognizes the application of tissue engineering and regenerative medicine in the production of a product or technology that ultimately will benefit patients. The award can be presented for an existing product or for a newly developed product that has been launched in the last five years, or for a technology launched in the last five years that can facilitate commercialization of a product… Continue reading.

...

Ameer Wins 2022 Bioactive Materials Lifetime Achievement Award

Via Northwestern University | May 16, 2022

Northwestern Engineering’s Guillermo A. Ameer has been named the 2022 Bioactive Materials Lifetime Achievement Award winner by the Bioactive Materials academic journal.

Established in 2021, the annual Bioactive Materials Lifetime Achievement Award recognizes excellence in research and development in the field of bioactive materials. The award is presented to a person judged to have demonstrated excellence and leadership in bioactive materials, including basic science and translation to practice… Continue reading.

...

Guillermo Ameer Awarded the Technology Innovation and Development Award

Via Northwestern University | January 26, 2022

Northwestern Engineering’s Guillermo A. Ameer, Daniel Hale Williams Professor of Biomedical Engineering at the McCormick School of Engineering and Surgery at the Feinberg School of Medicine, has been given the the 2022 Technology Innovation and Development Award by the Society For Biomaterials.

This award recognizes an individual’s (or a team’s) successful application of basic and applied biomaterials research in the development of a novel medical product or technology that significantly benefits the health and well-being of patients. Ameer’s laboratory is dedicated to the development of biomaterials and nanotechnology for regenerative engineering and medicine, specifically tissue engineering, medical devices, drug delivery, and cell delivery applications to improve surgery outcomes and patient care… Continue reading.

...

Nanotherapy offers new hope for the treatment of Type 1 diabetes

Via Northwestern University | January 17, 2022

Individuals living with Type 1 diabetes must carefully follow prescribed insulin regimens every day, receiving injections of the hormone via syringe, insulin pump or some other device. And without viable long-term treatments, this course of treatment is a lifelong sentence.

Pancreatic islets control insulin production when blood sugar levels change, and in Type 1 diabetes, the body’s immune system attacks and destroys such insulin-producing cells. Islet transplantation has emerged over the past few decades as a potential cure for Type 1 diabetes. With healthy transplanted islets, Type 1 diabetes patients may no longer need insulin injections, but transplantation efforts have faced setbacks as the immune system continues to eventually reject new islets. Current immunosuppressive drugs offer inadequate protection for transplanted cells and tissues and are plagued by undesirable side effects… Continue reading.

...

Ameer Named to National Academy of Medicine

Via Northwestern University | October 18, 2021

Northwestern Engineering’s Guillermo A. Ameer was one of three University faculty elected to the National Academy of Medicine (NAM).

Ameer is the Daniel Hale Williams Professor of Biomedical Engineering in the McCormick School of Engineering and a professor of surgery in Northwestern’s Feinberg School of Medicine, and also the founding director of Northwestern’s Center for Advanced Regenerative Engineering. He is director of the recently established Regenerative Engineering Training Program at the McCormick School of Engineering, supported by the National Institutes of Health.

“It is an honor to be recognized at this high level by my colleagues in medicine, healthcare, and health sciences, and it reflects the impact that our work in biomaterials and regenerative engineering is having in research, industry and patient care as per the commercialization of our biomaterial technology and the growth of the regenerative engineering field,” Ameer said… Continue reading.

...

Northwestern-invented biomaterial technology moves from lab bench to the orthopaedic market

Via Northwestern University | September 22, 2021

Resorbable anti-inflammatory tendon fixation technology used in patients for the first time

Northwestern biomedical engineer Guillermo A. Ameer has achieved a rare, major accomplishment. A medical product based on novel biomaterials pioneered in his laboratory will be widely available for use in musculoskeletal surgeries to directly benefit patients.

The biomaterial technology, called CITREGEN™, developed by the start-up company Acuitive Technologies, Inc., is featured in Stryker Corporation’s CITRELOCK™, an innovative device that will debut this week at the American Orthopaedic Foot and Ankle Society’s annual meeting in Charlotte, N.C. The CITRELOCK™ Tendon Fixation Device System is used to attach soft tissue grafts to bone in reconstruction surgeries and provides surgeons a differentiated design due to Ameer’s biomaterial… Continue reading.

...

Implantable ‘Living Pharmacy’ Could Control Body’s Sleep/Wake Cycles

Via Northwestern University | May 13, 2021

A Northwestern University-led team of researchers has signed a cooperative agreement with the Defense Advanced Research Projects Agency (DARPA) to develop a wireless, fully implantable device that will control the body’s circadian clock, halving the time it takes to recover from disrupted sleep/wake cycles.

The first phase of the highly interdisciplinary program will focus on developing the implant. The second phase, contingent on the first, will validate the device. If that milestone is met, then researchers will test the device in human trials, as part of the third phase. The full funding corresponds to $33 million over four-and-a-half years.

Nicknamed the “living pharmacy,” the device could be a powerful tool for military personnel, who frequently travel across multiple time zones, and shift workers including first responders, who vacillate between overnight and daytime shifts… Continue reading.

...

Ameer Named Fellow of Materials Research Society

Via Northwestern Engineering | April 1, 2021

Northwestern Engineering’s Guillermo A. Ameer has been named a fellow of the Materials Research Society for his contributions to regenerative engineering through pioneering work developing antioxidant citrate-based polymers that are useful for musculoskeletal, cardiovascular, dermal, and urological applications, rendering them enabling technologies to improve health.

Ameer is the Daniel Hale Williams Professor of Biomedical Engineering in the McCormick School of Engineering and a professor of surgery in Northwestern’s Feinberg School of Medicine. He also is founding director of Northwestern’s Center for Advanced Regenerative Engineering… Continue reading.

...

Ameer Receives Clemson Award for Contributions to the Literature

Via Northwestern University | December 23, 2020

Northwestern Engineering’s Guillermo Ameer has been named the recipient of the 2021 Clemson Award for Contributions to the Literature from the Society for Biomaterials.

The Clemson Award for Contributions to the Literature is given to someone who has made significant contributions to the literature on the science or technology of biomaterials. The importance of the contributions is evidenced by systematic publications in technical journals, significant critical analyses and/or reviews, frequent citations and referencing of the contributions by independent writers, and/or the publication of major works… Continue reading.

...

Medical device using Northwestern-invented biomaterial receives FDA clearance

Via Northwestern University | October 21, 2020

An innovative orthopedic medical device fabricated from a novel biomaterial pioneered in the laboratory of Northwestern University professor Guillermo A. Ameer has received clearance from the U.S. Food and Drug Administration (FDA) for use in surgeries to attach soft tissue grafts to bone.

The biomaterial is the first thermoset biodegradable synthetic polymer ever approved for use in an implantable medical device. It’s unique chemical and mechanical properties enable cutting-edge implant designs that protect the soft tissue graft during insertion and optimize graft fixation to bone… Continue reading.

...

Guillermo Ameer named AAAS fellow

Via Northwestern University | November 27, 2018

Three Northwestern University faculty members have been elected 2018 fellows of the American Association for the Advancement of Science (AAAS), the world’s largest general scientific society.

Guillermo Ameer, Jian Cao and Frederic Rasio have been recognized for their distinguished efforts to advance science or its applications. They will be honored on Saturday, Feb. 16, at the 2019 AAAS Annual Meeting in Washington, D.C.

Ameer is the Daniel Hale Williams Professor of Biomedical Engineering in the McCormick School of Engineering, professor of surgery in the Feinberg School of Medicine and director of the Center for Advanced Regenerative Engineering. He is recognized for his contributions to the fields of biomaterials science, tissue engineering and regenerative engineering, particularly for pioneering the development and applications of citrate-based biomaterials… Continue reading.

...

Northwestern Engineering’s Guillermo Ameer Receives Key to Panama City, Panama

Via Northwestern University | October 31, 2018

Northwestern Engineering’s Guillermo Ameer, a pioneer in the field of regenerative engineering, was presented the Key to Panama City, Panama, by Vice Mayor Raisa Banfield last week. The event was covered by Telemetro, a national Spanish-language television network based in Panama City.

Ameer, the Daniel Hale Williams Professor of Biomedical Engineering with the McCormick School of Engineering, was in his hometown to attend at APANAC 2018, the XVIII Congreso Nacional de Ciencia y Tecnologia, the nation’s premier science conference. He also serves as a professor of surgery at Northwestern University’s Feinberg School of Medicine, and he is the director of the Center for Advanced Regenerative Engineering (CARE)… Continue reading.

...

Engineering biology through DNA’s environment – NSF awards $16 million to understand and control epigenetic effects

Via National Science Foundation | September 12, 2018

To advance the engineering of biology at the molecular and cellular levels, the National Science Foundation (NSF) has awarded $16 million for research to characterize the regulation of gene activity and expression, and to create strategies to modify those processes without altering the DNA sequence.

Chromatin — a combination of DNA, RNA and proteins within a cell’s nucleus — can be modified by attaching additional molecules. This can cause altered gene expression without actually changing the cell’s DNA. These so-called epigenetic changes can alter an organism’s traits, or phenotype, and may even be passed to offspring.

……

The NSF EFRI Chromatin and Epigenetic Engineering (CEE) investment will support potentially transformative research by eight interdisciplinary teams:

  • Ascribing function to chromatin with coordinated live-cell epigenomic sensors and scalpels, Albert Keung, North Carolina State University, with Caroline Laplante and Balaji Rao
  • Engineering technologies to determine causal relationships between chromatin structure and gene regulation, Charles Gersbach, Duke University, with Brenton Hoffman, Michael Rubinstein and Xiling Shen
  • Epigenetic cell reprogramming in situ: A novel tool for regenerative engineering, Guillermo Ameer, Northwestern University, with Panagiotis Ntziachristos and Hariharan Subramanian
  • Epigenomic regulation over multiple length scales: Understanding chromatin modifications through label free imaging and multi-scale modeling, Juan De Pablo, University of Chicago, with Ali Shilatifard and Hao Zhang
  • Human cardiac opto-epigenetics with HDAC inhibitors, Emilia Entcheva, George Washington University, with Shu Jia, Zhenyu Li, Ralph Mazitschek and Alejandro Villagra
  • Macrogenomic engineering via modulation of chromatin nanoenvironment, Vadim Backman, Northwestern University, with Michael Kennedy, Hemant Roy and Igal Szleifer
  • Optically controlled localized epigenetic chromatin remodeling with photoactivatable CRISPR-dCas9, Lev Perelman, Beth Israel Deaconess Medical Center, with Irving Itzkan, J. Thomas Lamont, Le Qiu and Darren Roblyer
  • Sculpting the genome by design: Epigenetic and chromatin looping inputs to measure and manipulate chromatin organization and dynamics, Megan King, Yale University, with Simon G. Mochrie and Corey O’Hern

Continue reading

...

Regenerative Bandage Accelerates Healing in Diabetic Wounds

Via Northwestern University | June 11, 2018

A simple scrape or sore might not cause alarm for most people. But for diabetic patients, an untreated scratch can turn into an open wound that could potentially lead to a limb amputation or even death.

A Northwestern University team has developed a new device, called a regenerative bandage, that quickly heals these painful, hard-to-treat sores without using drugs. During head-to-head tests, Northwestern’s bandage healed diabetic wounds 33 percent faster than one of the most popular bandages currently on the market.

“The novelty is that we identified a segment of a protein in skin that is important to wound healing, made the segment and incorporated it into an antioxidant molecule that self-aggregates at body temperature to create a scaffold that facilitates the body’s ability to regenerate tissue at the wound site,” said Northwestern’s Guillermo Ameer, who led the study. “With this newer approach, we’re not releasing drugs or outside factors to accelerate healing. And it works very well… Continue reading.

...

Prevention of intimal hyperplasia by immobilized all-trans retinoic acid

Via Science Direct/Journal of Controlled Release | March 30, 2018

Neointimal hyperplasia is the main factor that determines the long- term durability of vascular interventions, such as angioplasty and by- pass grafting. As these interventions result in localized injury, several clinical therapeutics have been developed to deliver antiproliferative agents locally. Currently, several drug-eluting stents delivering anti- proliferative drugs (e.g., sirolimus and paclitaxel) are clinically avail- able for use after balloon angioplasty procedures [1]. However, to date, no durable alternatives are available to improve the patency of synthetic prosthetics grafts like expanded polytetrafluoroethylene (ePTFE) [2]. While similar pathophysiologic responses are involved following both interventions, injury that results following angioplasty is limited to the time of the procedure, while bypass grafting causes a continued stimulus for intimal hyperplasia due to changes in mechanical forces at the anastomosis and is influenced by the biocompatibility of the conduit utilized. These effects are greatest when prosthetic materials are uti- lized, and are responsible for the poor patency rates observed with these materials as compared with the performance of autologous saphenous vein. Cumulatively, the prior investigations suggest that successful in- hibition of intimal hyperplasia requires sustained delivery of a selective therapeutic agent from new bypass grafts… Continue reading this editor’s pick.

...

3D printing to keep life flowing

Via Materials Today | March 13, 2018

Life depends on keeping things flowing. Blood in our veins, nutrients in our digestive tracts, or air in our lungs, all need to be kept moving. When disease or damage obstruct the flow, medical stents and scaffolds can save lives. They hold crucial arteries open, while these blood vessels repair themselves, or maintain the necessary structure of a damaged esophagus or intestine.

Soon, making stents may be easier than ever, thanks to 3D printing technology. Guillermo Ameer, Cheng Sun and colleagues at Northwestern University in Chicago, US, report their progress with making 3D-printed vascular stents in the journal Materials Today Chemistry.

Despite their benefits and widespread use, existing stents can promote damaging inflammation, may become the site of further blockage due to sluggish flow, or can break in situ. Each clinical condition and each patient also ideally requires a customized stent or scaffolding graft with a specific size, shape, and strength… Continue reading.

...

Guillermo Ameer Elected Fellow of AIChE

Via Northwestern University | November 2, 2017

Northwestern Engineering’s Guillermo Ameer has been elected as a fellow of the American Institute of Chemical Engineers (AIChE), the world’s leading organization for chemical engineering professionals.

An expert in biomaterials and regenerative engineering, Ameer was recognized for his valuable contributions to the field. He officially received the award on October 31 at the AIChE Fellows Breakfast in Minneapolis.

“It’s an honor to be recognized and receive this distinction from AIChE,” said Ameer, the Daniel Hale Williams Professor of Biomedical Engineering and Surgery. “It puts me in the company of such highly accomplished chemical engineers… Continue reading.

...

New Material Regrows Bone

Via Northwestern | March 8, 2017

A team of researchers repaired a hole in a mouse’s skull by regrowing “quality bone,” a breakthrough that could drastically improve the care of people who suffer severe trauma to the skull or face.The work by a joint team of Northwestern Engineering and University of Chicago researchers was a resounding success, showing that a potent combination of technologies was able to regenerate the skull bone with supporting blood vessels in just the discrete area needed without developing scar tissue — and more rapidly than with previous methods.“The results are very exciting,” said Guillermo Ameer, professor of biomedical engineering at Northwestern’s McCormick School of Engineering, and professor of surgery at Feinberg School of Medicine. Supported by the China Scholarship Council, National Institute of Dental and Craniofacial Research, Chicago Community Trust, and National Center for Advancing Translational Sciences, the research was published last week in the journal PLOS One. Russell Reid, associate professor of surgery at the University of Chicago Medical Center, is the article’s corresponding author. Reid, his long-time collaborator Dr. Tong-Chuan He, and colleagues in Hyde Park brought the surgical and biological knowledge and skills. Zari P. Dumanian, affiliated with the medical center’s surgery department, was the paper’s first author. Guillermo Ameer: “This project was a true collaborative team effort in which our Regenerative Engineering Laboratory provided the biomaterials expertise,” Ameer said.Injuries or defects in the skull or facial bones are very challenging to treat, often requiring the surgeon to graft bone from the patient’s pelvis, ribs, or elsewhere, a painful procedure in itself. Difficulties increase if the injury area is large or if the graft needs to be contoured to the angle of the jaw or the cranial curve.

...

Regenerative Bandage Heals Diabetic Wounds Faster

Via Northwestern | August 16, 2016

At some point in their lives, 15 percent of people with diabetes will develop a painful and hard-to-treat foot ulcer. Twenty-four percent of those affected will require a lower-leg amputation because of it. And, in some instances, what seems like a harmless sore might even lead to death.

A Northwestern Engineering team has developed a new treatment for this severe and potentially deadly complication of diabetes. Called a “regenerative bandage,” the novel material heals diabetic wounds four times faster than a standard bandage and has the added benefit of promoting healing without side effects.

“Foot ulcers cause many serious problems for diabetic patients,” said Guillermo Ameer, professor of biomedical engineering in the McCormick School of Engineering and surgery in the Feinberg School of Medicine. “Some sores don’t heal fast enough and are prone to infection. We thought that we could use some of our work in biomaterials for medical applications and controlled drug release to help heal those wounds.”

An expert in biomaterials and tissue engineering, Ameer’s research was published online last week in the Journal of Controlled Release. Yunxiao Zhu, a PhD student in Ameer’s laboratory, is the paper’s first author. Northwestern Engineering’s Hao F. Zhang, associate professor of biomedical engineering, and Feinberg’s Robert Galliano, associate professor of surgery, also contributed to the work.

Diabetes can cause nerve damage that leads to numbness in the feet. A diabetic person might experience something as simple as a blister or small scrape that goes unnoticed and untreated because they cannot feel it to know that its there. As high glucose also thickens capillary walls, blood circulation slows, making it more difficult for these wounds to heal. It’s a perfect storm for a small nick to become a life-threatening sore.

...

Antioxidant Biomaterial Promotes Healing

Via Northwestern McCormick Engineering | July 24, 2014

When a foreign material like a medical device or surgical implant is put inside the human body, the body always responds. According to Northwestern’s Guillermo Ameer, most of the time, that response can be negative and affect the device’s function.

“You will always get an inflammatory response to some degree,” said Ameer, professor of biomedical engineering in McCormick School of Engineering and Applied Science and professor of surgery in the Feinberg School of Medicine. “A problem with commonly used plastic materials, in particular, is that in addition to that inflammatory response, oxidation occurs.”

We all need oxygen to survive, but a high concentration of oxygen in the body can cause oxidative reactions to fall out of balance, which modifies natural proteins, cells, and lipids and causes them to function abnormally. This oxidative stress is toxic and can contribute to chronic disease, chronic inflammation, and other complications that may cause the failure of implants.

For the first time ever, Ameer and his team have created a biodegradable biomaterial that is inherently antioxidant. The material can be used to create elastomers, liquids that turn into gels, or solids for building devices that are more compatible with cells and tissues. The research is described in the June 26 issue of Biomaterials.

“Plastics can self-oxidize, creating radicals as part of their degradation process,” Ameer said. “By implanting devices made from plastics, the oxidation process can injure nearby cells and create a cascade that leads to chronic inflammation. Our materials could significantly reduce the inflammatory response that we typically see.”

...

Bone Marrow Cells, Synthetic Scaffold Used in Bladder Regeneration

Via Northwestern Engineering | March 1, 2013

For patients suffering from spina bifida, the most common disabling birth defect in the United States, bladder dysfunction is common. Surgery is often considered the best treatment, but it comes with a host of complications, and today’s bladder tissue engineering strategies are unable to sufficiently reform bladder tissue without causing other problems.

In a new study, Northwestern University researchers explore an alternative to contemporary tissue-engineering strategies. The result is a new approach to bladder regeneration that can reform bladder smooth muscle, vasculature, and promote peripheral nerve tissue growth, all while using populations of cells from the patient himself.

The approach utilizes a synthetic scaffold developed by Guillermo Ameer, professor of biomedical engineering at Northwestern’s McCormick School of Engineering and professor of surgery at Feinberg School of Medicine, and two distinct cell populations harvested from a patient’s healthy bone marrow. The work was conducted in collaboration with researchers at Feinberg, the Ann & Robert H. Lurie Children’s Hospital of Chicago, and other institutions.

...

Researchers Develop New Method for Creating Tissue Engineering Scaffolds

Via Northwestern Engineering | February 10, 2012

Researchers at Northwestern University have developed a new method for creating scaffolds for tissue engineering applications, providing an alternative that is more flexible and less time-intensive than current technology.

A paper describing the results, “Low-Pressure Foaming: A Novel Method for the Fabrication of Porous Scaffolds for Tissue Engineering,” was featured in the February issue of the journal Tissue Engineering.

Through tissue engineering, researchers seek to regenerate human tissue, such as bone and cartilage, that has been damaged by injury or disease. Scaffolds — artificial, lattice-like structures capable of supporting tissue formation — are necessary in this process to provide a template to support the growing cells. Over time, the scaffold resorbs into the body, leaving behind the natural tissue.

Scaffolds are typically engineered with pores that allow the cells to migrate throughout the material. The pores are often created with the use of salt, sugar, or carbon dioxide gas, but these additives have various drawbacks; They create an imperfect pore structures and, in the case of salt, require a lengthy process to remove the salt after the pores are created, said Guillermo Ameer, professor of biomedical engineering at the McCormick School of Engineering and professor of surgery at the Feinberg School of Medicine.

...

Getting Rid of the Stent

Via Northwestern Engineering | March 1, 2010

Late one night several years ago in a shared office on the top floor of the Robert H. Lurie Medical Research Center on the Chicago campus, Guillermo Ameer and Melina Kibbe came up with a new idea for their research. Kibbe, associate professor of vascular surgery at the Feinberg School of Medicine, had spread out the different kinds of stents she uses in surgery; Ameer, associate professor of biomedical engineering at McCormick and of surgery at Feinberg, wanted to know why certain aspects of one or another are good or bad, and what causes devices to fail, and how biomaterials could be more successful. after a long discussion the two came up with a radical idea: What is you got rid of the stent altogether?

...