A single cell contains the genetic instructions for an entire organism. This genomic information is managed and processed by the complex machinery of chromatin — a mix of DNA and protein within chromosomes whose function and role in disease are of increasing interest to scientists.
A Northwestern University research team — using mathematical modeling and optical imaging they developed themselves — has discovered how chromatin folds at the single-cell level. The researchers found chromatin is folded into a variety of tree-like domains spaced along a chromatin backbone. These small and large areas are like a mixed forest of trees growing from the forest floor. The overall structure is a 3D forest at microscale… Continue reading.
Each cell in the human body holds a full two meters of DNA. In order for that DNA to fit into the cell nucleus — a cozy space just one hundredth of a millimeter of space — it needs to be packed extremely tight.
A new Northwestern University study has discovered that the packing of the three-dimensional genome structure, called chromatin, controls how cells respond to stress. When the chromatin packing is heterogenous and disordered, a cell demonstrates more plasticity. When the packing is neat and orderly, a cell cannot respond as easily to outside stressors.
This discovery comes with both good and bad news… Continue reading.
To advance the engineering of biology at the molecular and cellular levels, the National Science Foundation (NSF) has awarded $16 million for research to characterize the regulation of gene activity and expression, and to create strategies to modify those processes without altering the DNA sequence.
Chromatin — a combination of DNA, RNA and proteins within a cell’s nucleus — can be modified by attaching additional molecules. This can cause altered gene expression without actually changing the cell’s DNA. These so-called epigenetic changes can alter an organism’s traits, or phenotype, and may even be passed to offspring.
……
The NSF EFRI Chromatin and Epigenetic Engineering (CEE) investment will support potentially transformative research by eight interdisciplinary teams:
Igal Szleifer, the Christina Enroth-Cugell Professor of Biomedical Engineering in McCormick. Szleifer was chosen for his distinguished contributions to the field of biomaterials and biointerfaces, particularly for theoretical modeling of molecular organization and biorelated function in polymer modified surfaces.