image_alt_text
6

Darrell J. Irvine, Ph.D.

AIMBE College of Fellows Class of 2015
For outstanding contributions to immune engineering, through a marriage of immunobiology-driven science with the tools and techniques of bioengineering

Nanoparticles give immune cells a boost

Via MIT | July 9, 2018

Programming the body’s immune system to attack cancer cells has had promising results for treating blood cancers such as lymphoma and leukemia. This tactic has proven more challenging for solid tumors such as breast or lung cancers, but MIT researchers have now devised a novel way to boost the immune response against solid tumors.

By developing nanoparticle “backpacks” that hold immune-stimulating drugs, and attaching them directly to T cells, the MIT engineers showed in a study of mice that they could enhance those T cells’ activity without harmful side effects. In more than half of the treated animals, tumors disappeared completely.

“We found you could greatly improve the efficacy of the T cell therapy with backpacked drugs that help the donor T cells survive and function more effectively. Even more importantly, we achieved that without any of the toxicity that you see with systemic injection of the drugs,” says Darrell Irvine, a professor of biological engineering and of materials science and engineering, an associate director of MIT’s Koch Institute for Integrative Cancer Research, and the senior author of the study… Continue reading.

...

Torque, a Flagship Pioneering Company, Launches Platform to Develop a New Class of Deep-Primed Immune Cell Therapies, Financed with $25M Series A and Led by a Veteran Management Team

Via PR News Wire | November 14, 2017

Torque, an immuno-oncology company developing Deep Primed™ cell therapies that direct and evoke immune responses in the tumor microenvironment, today announced the launch of its technology platform to create a new class of immune cell therapeutics to treat cancer, financed with $25 million in Series A capital by Flagship Pioneering. The Torque platform makes it possible to anchor powerful stimulatory cytokines, antibodies, and small molecules directly to immune cells to direct their activity and increase their efficacy and durability in the “hostile” tumor microenvironment, without systemic exposure.

 …

“By arming immune cells to function robustly deep in the tumor microenvironment, this approach has the potential to create a new class of cellular immunotherapeutics, substantially expanding the efficacy of conventional cell-based methods,” said Darrell Irvine, PhD, co-founder of Torque, Professor of Materials Science & Engineering and Biological Engineering at the Massachusetts Institute of Technology and an Investigator of the Howard Hughes Medical Institute. “Torque’s approach has the potential to significantly expand the proportion of patients that respond to cellular immunotherapy and to take us closer to curing cancer, rather than just slowing its progression… Continue reading.

...

Darrell J. Irvine, Ph.D. To be Inducted into Medical and Biological Engineering Elite

Via AIMBE | March 5, 2015

WASHINGTON, D.C.— The American Institute for Medical and Biological Engineering (AIMBE) has announced the pending induction of Darrell J. Irvine, Ph.D., Professor of Biological Engineering and Materials Science, Biological Engineering, Massachusetts Institute of Technology, to its College of Fellows. Dr. Irvine was nominated, reviewed, and elected by peers and members of the College of Fellows For outstanding contributions to immune engineering, through a marriage of immunobiology-driven science with the tools and techniques of bioengineering.

...