image_alt_text
9

Metin Akay, Ph.D.

AIMBE College of Fellows Class of 2010
For outstanding contributions in the fields of neural and cardiovascular engineering and efforts in the promotion of biomedical engineering education.

Improved brain chip for precision medicine

Via EurekAlert | January 16, 2020

The Akay Lab biomedical research team at the University of Houston is reporting an improvement on a microfluidic brain cancer chip previously developed in their lab. The new chip allows multiple-simultaneous drug administration, and a massive parallel testing of drug response for patients with glioblastoma (GBM), the most common malignant brain tumor, accounting for 50% of all cases. GBM patients have a ?ve-year survival rate of only 5.6%.

“The new chip generates tumor spheroids, or clusters, and provides large-scale assessments on the response of these GBM tumor cells to various concentrations and combinations of drugs. This platform could optimize the use of rare tumor samples derived from GBM patients to provide valuable insight on the tumor growth and responses to drug therapies,” reports Metin Akay, John S. Dunn Endowed Chair Professor of Biomedical Engineering and department chair. The paper is published in the inaugural issue of the IEEE Engineering in Medicine & Biology Society’s Open Journal of Engineering in Medicine and Biology… Continue reading.

Temozolomide in Combination With NF-κB Inhibitor Significantly Disrupts the Glioblastoma Multiforme Spheroid Formation

Via IEEE | December 30, 2019

Impact Statement:

Drug test on cancer spheroids in improved brain-chip demonstrate that the combined effect of temozolomide and NF-κB inhibitor on disrupting GBM spheroid formation outperforms each of the drugs alone.

Abstract:

Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor, accounting for 50% of all cases. GBM patients have a five-year survival rate of merely 5.6% and a median overall survival of 14.6 months with the “Stupp” regimen, 20.9 months with tumor treatment fields (TTF, OptuneR) in patients who participated in clinical trials, and 11 months for all GBM patients prior to TTF use. Objective: Our group recently developed a brain cancer chip which generates tumor spheroids, and provides large-scale assessments on the response of tumor cells to various concentrations and combinations of drugs. This platform could optimize the use of tumor samples derived from GBM patients to provide valuable insight on the tumor growth and responses to drug therapies. To minimize any sample loss in vitro, we improved our brain cancer chip system by adding an additional laminar flow distribution layer, which reduces sample loss during cell seeding and prevents spheroids from escaping from the microwells. Methods: In this study, we cultured 3D spheroids from GBM cell lines and patient-derived GBM cells in vitro, and investigated the effect of the combination of Temozolomide and nuclear factor-κB inhibitor on tumor growth. Results: Our study revealed that these drugs have synergistic effects in inhibiting spheroid formation when used in combination. Conclusions: These results suggest that the brain cancer chip enables large-scale, inexpensive and sample-effective drug screening to 3D cancer tumors in vitro, and could be applied to related tissue engineering drug screening studies… Read the full article.

New Curriculum, New Faculty for Biomedical Engineering

Via University of Houston | August 30, 2013

Building an entirely new academic program has its benefits. Sure, some parts of the job can be difficult – handling everything from faculty searches to office supply orders is enough to make anyone’s head spin. But there’s a reason a clean slate is so valuable: you can write anything you want on it.

That’s the opportunity Metin Akay seized in 2010 when he became the founding chairman and John S. Dunn Endowed Chair Professor of the Cullen College of Engineering’s Department of Biomedical Engineering. At that time, the department was little more than a name – just two faculty member, no staff and no firm curricula. A challenge, to be sure, but also the perfect situation to create the biomedical engineering department of the future.

Akay Honored by Two Engineering Associations

Via University of Houston | April 2, 2012

The Institute of Electrical and Electronics Engineers has named Metin Akay, founding chair and John S. Dunn Endowed Chair Professor of the Cullen College’s Department of Biomedical Engineering, to its inaugural group of IEEE Brand Ambassadors.

Founded in January of this year, the Brand Ambassador’s program is designed to communicate the importance of engineers and engineering to those outside the profession and promote IEEE within the engineering world. Out of the IEEE’s worldwide membership of 400,000, the organization selected just 30 members representing different engineering fields and geographies to be ambassadors.

“The idea behind the program is to have a handful of people to promote the IEEE, to inform the society’s membership and the public at large about the achievements of engineers,” said Akay. “The main mission of the ambassadors is to be representatives of the society, to advocate for and promote IEEE and its achievements globally.”

Akay Delivers Keynote Address at Middle East Conference on Biomedical Engineering

Via University of Houston | April 19, 2011

Metin Akay, chair of the Cullen College’s Department of Biomedical Engineering, recently served as a keynote speaker at the first Middle East Conference on Biomedical Engineering.

Biomedical Engineering Doctoral Program Approved

Via University of Houston | August 17, 2010

The University of Houston Health Initiative has received a major boost from the Texas Higher Education Coordinating Board, which recently approved the establishment of a doctoral program in biomedical engineering at the UH Cullen College of Engineering…

…”Our program will discover, develop and deliver technological solutions aimed at reducing health care costs,” said Metin Akay, founding chair of the UH Department of Biomedical Engineering. “That’s the difference between our program and the more than 90 others in the United States.”

New Biomedical Chair Earns Esteemed Engineering Honors

Via University of Houston | January 22, 2010

Just weeks into his post as John S. Dunn Distinguished Professor and founding chair of the University of Houston Department of Biomedical Engineering, Metin Akay is already being recognized.

He has been selected and will be inducted next month into two prestigious engineering and science organizations—the American Association for the Advancement of Science (AAAS) and the College of Fellows of the American Institute for Medical and Biological Engineering (AIMBE).